
MiniSat v1.13 – A SAT Solver with Conflict-Clause

Minimization

Niklas Sörensson, Niklas Een

Chalmers University of Technology, Sweden
{nik,een}@cs.chalmers.se

Abstract. In this poster we summarize the features of the MiniSat version en-
tering the SAT Competition 2005. The main new feature is a resolution based
conflict clause minimization technique based on self-subsuming resolution. Ex-
periments show that on industrial examples, it is not unusual for more than 30%
of the literals in a conflict clause to be redundant. Removing these literals re-
duces memory consumption and produce stronger clauses which may propagate
under fewer decisions in the DPLL search procedure.

We also want to raise attention to the particular version of VSIDS im-
plemented in MiniSat, which we believe is a consistent improvement over the
original VSIDS decision heuristic of the same magnitude as many of the recently
proposed alternatives [GY02,Ry03].

Introduction

MiniSat is a minimalistic implementation of a Chaff-like SAT solver based on the
two-literal watch scheme for fast BCP [MZ01] and clause learning by conflict analysis
[MS99]. It entered the SAT 2005 competition, both as a stand-alone solver, and as a
back-end to the preprocessor SatELite [EB05]. A number of small improvements has
been made in MiniSat with respect to the original Chaff. Two important features
are the incremental SAT interface, and the support for user defined boolean constrains
[ES03]. Although none of these improvements are relevant for the SAT competition,
where only non-incremental SAT problems in CNF are used, they are important when
using MiniSat as an integrated part of a bigger system. The pure SAT-speed improve-
ments, relevant to the SAT competition, are listed in the below section.

MiniSat v1.13

1. Variable order. The decision heuristic of MiniSat is an improved VSIDS order,
where variable activities are decayed 5% after each conflict. The original VSIDS
decays variables 50% after each 1000 conflicts or so. Benchmarks have shown that
the improved scheme responds more quickly to changes in the productive set of
branch-variables than the original VSIDS, and avoids branching on out-dated vari-
ables. Important to the heuristic is increasing the activity of all variables occuring
in some clause used in the conflict analysis, not just variables of the final conflict
clause (as in the first version of MiniSat). To keep the variables sorted on activity
at all times, a heap is used in the current version of the solver.

2. Binary clauses. Binary clauses are implemented by storing the literal to be prop-
agated directly in the watcher list. In our experiments, though not conclusive, this
scheme outperformed a version storing all binary clauses in a separate set of vectors
on the side. In such a scheme, it is natural to propagate all binary clauses either
before or after the bigger clauses gets propagated by the BCP. This affects the
implication graph and seems to produce worse conflict clauses.



3. Clause deletion. MiniSat aggressively deletes learned clauses based on an ac-
tivity heuristic similar to the one for variables. The limit on how many learned
clauses are allowed is increased after each restart. Keeping the number of clauses
low seems to be particular important for some small but hard problems. The actual
activity heuristic currently used is admittedly a weak point of MiniSat.

4. Conflict clause minimization. This is the main improvement (due to Niklas
Sörensson) in version 1.13 over version 1.12, and the topic of the next section.

Conflict clause minimization

Definition: Let C and C′ be clauses, ⊗x the resolution operator on variable x. If
C ⊗x C′ ⊆ C then C is said to be self-subsumed by C′ w.r.t. x.

In effect, C′ is used to remove x (or x) from C by the fact that C is subsumed by
C ⊗x C′. A particularly useful and simple place to apply self-subsumption is in the
conflict clause generation. The following 5-line algorithm can easily be added to any
clause recording SAT solver:

strengthenCC (Clause C) – C is the conflict clause

for each p ∈ C do

if (reason(p)\{p} ⊆ C)
mark p

remove all marked literals in C

By reason(p) we denote the clause that became unit and propagated p =True.

For every literal p of the newly generated conflict-clause C, the algorithm tries to self-
subsume C by the reason clause for p. If successful, p can be removed, corresponding
to replacing C with C⊗preason(p).

The procedure fails if the reason clause for p contains at least one literal q not part
of the conflict clause C. However, by following the reason graph (implication graph)
backwards for q, we might find that q became true as a consequence of assigning only
literals present in the conflict clause, in which case q can be ignored. If this is true for
all literals not in C, p can still be removed.

Another way to view this is that any literal in a clause that is implied to be False

by assuming a subset of the other literals in that clause to be False, might be removed.
We are using the reason graph produced by the BCP to extract some information of
this kind; thus making more use of the information we already spent some effort on
deriving. For more details, please refer to the source code of MiniSat v1.13.

References

[MS99] J.P. Marques-Silva, K.A. Sakallah. “GRASP: A Search Algorithm for Propositional Satis-

fiability” in IEEE Transactions on Computers, vol 48, 1999.
[MZ01] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik “Chaff: Engineering an Efficient

SAT Solver” in DAC 2001.
[ES03] N. Eén, N. Sörensson. “An Extensible SAT-solver” in SAT 2003, pp. 502-508.
[EB05] N. Eén, A. Biere. “Effective Preprocessing in SAT Through Variable and Clause Elimi-

nation” in SAT 2005.
[GY02] E. Goldberg, Y. Novikov. “BerkMin: A Fast and Robust SAT Solver” in Design Automation

and Test in Europe, IEEE CNF 2002.
[Ry03] L. Ryan. “Efficient Algorithms for Clause-Learning SAT Solvers”, M.Sc. Thesis, Simon

Fraser Univ. 2003.


